Wrenbury Primary School calculation policy

(adapted from the Whiterose Maths Hub calculation policy, this is a working document and will be amended as necessary)
'...where we all matter'
Addition

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part - part whole model	Use part - part whole model. Use cubes to add two numbers together as a group of in a bar	Use pictures to add two numbers together as a group or in a bar	Use the part - part whole diagrams shown below to move into the abstract $4+3=7$ Four is a part, 3 is a part and the whole is 7
Counting on from the biggest number	Counting on using bead strings, cubes on a number line or Numicon on a number line	Count on in ones along a number line starting with the biggest number Using a bar model to count on from the biggest number	Place the larger number in your head and count on the smaller number to find your answer. $5+12=17$ Using an abstract number line

Regrouping to make ten	Using ten frames with counters/cubes, using Numicon or bead strings	Children to draw the ten frame with counters/cubes or using a number line, regrouping or partitioning smaller number $9+5=14$ 14	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
2 digit number add a one digit number (TO + o)	Develop understanding of partitioning and place value using Base 10/dienes to add $41+8$	Using a number line to jump on in ones Drawing Base 10/dienes to add on ones $41+8$	Using an abstract number line Counting on from the biggest number in your head/using your fingers to support
2 digit number add a 2 digit number (TO + TO)	Develop understanding of partitioning and place value using Base 10/dienes to add	Adding ones and tens on a number line Represent Base 10/dienes in a place value chart	Using an abstract number line Formal method (if appropriate) 36 $\frac{+25}{61}$

Subtraction

2 digit number subtract a 1 digit number	Using Numicon to create a 2-digit number and adding on the 1-digit number to find the total $37+7$	Count back using a number line	Abstract Count ba	num		ne -7	$=1$ -7	12 7 num	
2 digit number subtract a 2 digit number		Draw representations to support understanding	Subtract number lin \square	one line 67	and			an a	t

Multiplication

Objective	Concrete	Pictorial	Abstract
Counting in multiples	Count the groups of multiples	Draw representations for counting in multiples $2 \quad 2$ $2 \frac{2}{2} 2^{2} 2^{2}$ \qquad 100100001000010010 alo dolo 20	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$
Multiplication as repeated addition	Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group	Represent practical resources in a picture and use a bar model 88	$3 \times 4=12$ $4+4+4=12$
Multiplication as repeated groups	Number lines to show repeated groups 3×4	Represent this pictorially alongside a number line	Abstract number line showing three jumps of 4 $3 \times 4=12$

	Cuisenaire rods can be used too	$\prod_{0}^{00001_{4} 0000_{8}^{10000_{12}} 12}$	
Show that multiplication of two numbers can be done in any order (commutative)	Use arrays to illustrate commutativity, counters and other objects can be used 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially 00 00 00 00000 00000 00 00	Children to be able to use an array to write a range of calculations $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Multiplying a 2 digit number by a 1 digit number	Formal column method to multiply a 2-digit number by a 1-digit number using place value counters/dienes 6×23	Represent the column method by drawing place value counters 6×23	Record multiplication process step by step through partitioning or column method $\left.\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ 1 \backslash & 3 \times 3=9 \\ 20 & 3 \end{array}\right) 60+9=69$ 23 $\begin{array}{r} \times \quad 3 \\ \hline 69 \\ \hline \end{array}$

Division

Objective	Concrete	Pictorial	Abstract
Division by sharing	Sharing using a range of objects $6 \div 2$	Represent the sharing pictorially	Using bars to represent sharing $6 \div 2=3$
			Children should be encouraged to use their 2 times tables facts.
Division as grouping	Dividing quantities into equal groups Use cubes, counters, Numicon, objects or place value counters to support understanding	Use number lines for grouping $12 \div 3=4$ Using a bar model to divide the bar into equal groups	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group? How many groups of 6 in 24? $24 \div 6=4$

Division with repeated subtraction	Repeated subtraction using Cuisenaire rods above a ruler 3 groups of 2	Represent the repeated subtraction pictorially	Abstract number line to represent the equal groups that have been subtracted
Division with remainders	Divide objects between groups to see how much is left over	Using a number line to jump forwards in equal jumps and see how many more you need to jump to find the remainder Draw dots and group them to divide amount and clearly show the remainder remainder 2	Complete written divisions and show the remainder using r
Short division	Short division using place value counters to groups $615 \div 5$	Represent the place value counters pictorially	Children to do the calculation using the short division scaffold (bus stop)

las
1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?

	615 pupils need to be put into 5 groups. How many will be in each group?	$\begin{aligned} & 615 \div 5= \\ & -=615 \div 5 \end{aligned}$	1005	10 s	15
				$\begin{array}{\|l\|} \hline 1000 \\ 0 \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 10000 \\ \hline 1000 \\ 10000 \end{array}$

