Wrenbury Primary School calculation policy

(adapted from the Whiterose Maths Hub calculation policy, this is a working document and will be amended as necessary)

Addition

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part – part whole model	Use part – part whole model.	Use pictures to add two numbers together as a group or in a bar	Use the part – part whole diagrams shown below to move into the abstract 4 + 3 = 7 Four is a part, 3 is a part and the whole is 7
	group of in a bar	3 Balls 2 Balls	
Counting on from the biggest number	Counting on using bead strings, cubes on a number line or Numicon on a number line	Count on in ones along a number line starting with the biggest number 12 + 5 = 17 10 11 12 13 14 15 16 17 18 19 20 Using a bar model to count on from the biggest number 12 + 5 = 17 10 11 12 13 14 15 16 17 18 19 20 Using a bar model to count on from the biggest number	Place the larger number in your head and count on the smaller number to find your answer. 5 + 12 = 17 Using an abstract number line

Regrouping to	Using ten frames with counters/cubes, using	Children to draw the ten frame with	Children to develop an understanding of
make ten	Numicon or bead strings	counters/cubes or using a number line,	equality e.g.
		regrouping or partitioning smaller number	6 + □ = 11
			6 + 5 = 5 + 🗆
	COCCECCE)		6 + 5 = 🗆 + 4
		9 + 5 = 14 1 4 +1 +4	
		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
2 digit number	Develop understanding of partitioning and	Using a number line to jump on in ones	Using an abstract number line
add a one digit number (TO +	place value using Base 10/dienes to add	$\underline{14} + 5 = (9) \qquad \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$	14+5=
0)	41 + 8	Drawing Base 10/dienes to add on ones	+5
		$\frac{10s}{1111}$	Counting on from the biggest number in your head/using your fingers to support
		411	
2 digit number	Develop understanding of partitioning and	Adding ones and tens on a number line	Using an abstract number line
add a 2 digit	place value using Base 10/dienes to add	TO	Formal method (if appropriate)
TO)	10s 1s	54+37=	36
- /	an Alla	+ 7 + 10 + 10	30
		54 61 91	
	A AA		+25
			61
		Represent Base 10/dienes in a place value chart	
	6 1		1
		II I ()	
		6 1	

Subtraction

Objective	Concrete	Pictorial	Abstract
Subtraction as taking away	Physically taking away and removing objects from a whole (tens frames, Numicon, cubes and other items such as bean bags) 4 – 3 = 1	Drawing the concrete resources they are using and cross out the correct amount. The bar model can also be used.	Using numbers within part, part whole models or bar models. 4-3 = = = 4 - 3
		XXXX XXXX	
Subtraction as counting back	Counting Back from the biggest number (using number lines or number tracks) Children start with 6 and count back 2 6-2=4 1 2 3 4 5 6 7 8 9 10 Moving the beads along the bead string as you count backwards	Representing what they see pictorially 12345678100 Counting back on a number lines	Counting back on a blank number line or counting back in their heads (using fingers if necessary)
The difference between two amounts	Finding the difference (using cubes, Numicon, Cuisenaire rods or another appropriate resource)	Children to draw cubes/concrete objects or use the bar model to illustrate what they need to calculate	Find the difference between 8 and 5 – children to understand that finding the difference is the same as taking away and therefore using counting back methods to find the answer.

	Calculate the difference between 8 and 5	$ \begin{array}{c} 000000; \hline ? \\ \hline 8 \\ \hline 5 \\ \hline ? \\ \hline \\ \hline \\ \hline \\ \hline \\ 0 \\ \hline \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline \\ \hline$	
2 digit number subtract a 1 digit number	Using Numicon to create a 2-digit number and adding on the 1-digit number to find the total 37 + 7 +	Count back using a number line	Abstract number line 19-7=12 12 12 12 Count back from the biggest number
2 digit number subtract a 2 digit number	47—32 Use base 10 or Numicon to model	Draw representations to support understanding	Subtract ones and tens using an abstract number line 67 - 28 = 39 - 59 - 67
	to exchange. 41 – 26		

Multiplication

Objective	Concrete	Pictorial	Abstract	
Counting in multiples	Count the groups of multiples	Draw representations for counting in multiples	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30	
Multiplication	Repeated grouping/repeated addition	Represent practical resources in a picture and	3 x 4 = 12	
addition	3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group $ \begin{array}{c} \hline \\ \hline $	88 88 88 	4 + 4 + 4 = 12	
Multiplication as repeated groups	Number lines to show repeated groups 3 x 4	Represent this pictorially alongside a number line	Abstract number line showing three jumps of 4 3 x 4 = 12	

	Cuisenaire rods can be used too	12 000010000100001 4 8 12	4
Show that multiplication of two numbers can be done in any order (commutative)	Use arrays to illustrate commutativity, counters and other objects can be used 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially	Children to be able to use an array to write a range of calculations $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Multiplying a 2 digit number by a 1 digit number	Formal column method to multiply a 2-digit number by a 1-digit number using place value counters/dienes 3 x 23 105 15 0	Represent the column method by drawing place value counters IOs Is 00 000 00 000 00 000 00 000 00 000 6 x 23	Record multiplication process step by step through partitioning or column method 3×23 $3 \times 20 = 60$ $1 \times 3 \times 3 = 9$ $20 \times 60 + 9 = 69$ 23 $\frac{\times 3}{69}$ 6×23

	100s 10s 1s 000 000 000 000 000 000 000 000 000 000 000 100s 10s 1s 000	100s	Os Is 00000000000000000000000000000000000	$6 \times 23 =$ 23 $\frac{\times 6}{138}$ 1^{-1}		
Multiply 3d x 3d or 4d x 2d etc.	When children start to abstract methods	multiply 3d x 3d and 4d x 2d etc., they sho	ould be confident with the		1 2 × 2 -7 4 2 -4 8 3 2 2 1 1 Answer: 3	4 6 4 0 4 224
Conceptual va	riation; different ways	to ask children to solve 6 x 23		• •		
23 23 2	23 23 23 23 ?	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? With the counters, prove that 6 x 23 = 138	Find the product of 6 and 23 $6 \times 23 =$ 6×23 6×23 $\times 23 \times 6$ 	What is	s the calculations the product?	on? 1 0 0 0 0 0 0 0 0

Division

Objective	Concrete	Pictorial	Abstract
Division by	Sharing using a range of objects	Represent the sharing pictorially	Using bars to represent sharing
sharing	6÷2		6÷2=3
		· · · · · · · · · · · · · · · · · · ·	Children should be encouraged to use their 2 times tables facts.
Division as grouping	Dividing quantities into equal groups Use cubes, counters, Numicon, objects or place value counters to support understanding	Use number lines for grouping	 28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group? How many groups of 6 in 24? 24 ÷ 6 = 4
	0 5 10 15 20 25 30 35	12 ÷ 3 = 4 Using a bar model to divide the bar into equal groups	

	$96 \div 3 = 32$	20 ? 20 \div 5 = ? 5 x ? = 20			
Division with repeated subtraction	Repeated subtraction using Cuisenaire rods above a ruler -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Represent the repeated subtraction pictorially $ \begin{array}{c} -2 & -2 \\ \hline \hline$	Abstract number line to represent the equal groups that have been subtracted		
Division with remainders	Divide objects between groups to see how much is left over 14 ÷ 3	Using a number line to jump forwards in equal jumps and see how many more you need to jump to find the remainder 0 4 8 12 13 Draw dots and group them to divide amount and clearly show the remainder 0 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Complete written divisions and show the remainder using r $29 \div 8 = 3$ REMAINDER 5 $\uparrow \uparrow \uparrow \uparrow$ dividend divisor quotient remainder		
Short division	Short division using place value counters to groups 615 ÷ 5	Represent the place value counters pictorially	Children to do the calculation using the short division scaffold (bus stop)		

615	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 = = 615 ÷ 5	100s	10s	1s
500 100 15					